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ABSTRACT 
In the recent past, in-memory distributed database management 
systems have become increasingly popular to manage and query 
huge amounts of data. For an in-memory distributed database like 
MemSQL, it is imperative that the analytical queries run fast. A 
huge proportion of MemSQL’s customer workloads have ad-hoc 
analytical queries that need to finish execution within a second or 
a few seconds. This leaves us with very little time to perform 
query optimization for complex queries involving several joins, 
aggregations, sub-queries etc. Even for queries that are not ad-
hoc, a change in data statistics can trigger query re-optimization. 
Query Optimization, if not done intelligently, could very well be 
the bottleneck for such complex analytical queries that require 
real-time response. In this paper, we outline some of the early 
steps that we have taken to reduce the query optimization time 
without sacrificing plan quality. We optimized the Enumerator 
(the optimizer component that determines operator order), which 
takes up bulk of the optimization time. Generating bushy plans 
inside the Enumerator can be a bottleneck and so we used 
heuristics to generate bushy plans via query rewrite. We also 
implemented new distribution aware greedy heuristics to generate 
a good starting candidate plan that significantly prunes out states 
during search space analysis inside the Enumerator. We 
demonstrate the effectiveness of these techniques over several 
queries in TPC-H and TPC-DS benchmarks. 

1. INTRODUCTION 
    In the past few years, there has been a massive adoption of 
distributed in-memory databases. The ability to store and query 
huge amounts of data by parallelizing execution across nodes 

leads to dramatic performance improvements in execution times 
for analytical data workloads.  A few industrial database systems 
such as MemSQL [13], SAP HANA [9], Teradata/Aster [10], 
Netezza [11], SQL Server PDW [6], Oracle Exadata [12], Pivotal 
GreenPlum [7], Vertica [8], VectorWise [16] etc. have gained 
popularity and are designed to run queries very fast. 
 

1.1 Overview of MemSQL 
    MemSQL [13] is a database for performing real time 
transactions and analytics. By storing data in memory, MemSQL 
can concurrently read and write data on a distributed system, 
therefore enabling real-time analytics over an operational 
database.  Due to its innovative in-memory storage of data with 
lock-free data structures and its extremely scalable distributed 
architecture, MemSQL achieves sub-second query latencies 
across very high volumes of data. MemSQL is designed to scale 
on commodity hardware and does not require any special 
hardware or instruction set to demonstrate its raw power.  
MemSQL has a shared-nothing architecture, which means that no 
two nodes in the distributed system share memory, disk or CPU. 
MemSQL has a two-tiered [14] clustered architecture that consists 
of two types of nodes: aggregator nodes and leaf nodes. 
Aggregator nodes serve as mediators between the client and the 
cluster, while leaf nodes provide the data storage and query 
processing backbone of the system. Users route queries to the 
aggregator nodes, where they are parsed, optimized, and planned. 

1.2 Query Optimization in MemSQL 
    MemSQL [13] is a database for real-time transactions and 
analytics, which must support a wide variety of challenging 
queries. A lot of queries that MemSQL executes are complex 
queries from enterprise analytical workloads, involving joins 
across star and snowflake schemas, sorting, grouping and 
aggregations, and nested sub-queries. A considerable percentage 
of those queries go through the process of query optimization 
because they are either ad-hoc or the data statistics have changed 
enough to trigger re-optimization. These queries often must be 
answered within latencies measured in seconds or even 
milliseconds despite being highly resource intensive. The goal of 
the query optimizer is to find the best query execution plan for a 
given query by enumerating a wide space of potential execution 
paths and then selecting the plan with the least cost.  
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The MemSQL Query Optimizer is a modular layer in the database 
engine. The optimizer framework is divided into three major 
modules: 

(1) Rewriter: The Rewriter applies SQL-to-SQL rewrites on 
the query. Depending on the characteristics of the query 
and the rewrite itself, the rewrite decides whether to apply 
the rewrite using heuristics or cost.  The Rewriter is also 
smart to apply certain rewrites in a top-down fashion while 
applying others in a bottom-up manner. It also interleaves 
rewrites that can mutually benefit from each other.  

(2) Enumerator: The Enumerator is a central component of the 
optimizer, which determines the distributed join order and 
data movement decisions.  It considers a wide search space 
of various execution alternatives and selects the best join 
order, based on the cost models of the database operations 
and the network data movement operations.  The 
Enumerator is invoked by the Rewriter to cost transformed 
queries when the Rewriter wants to perform a cost-based 
query rewrite.  

(3) Planner: The Planner converts the chosen logical 
execution plan to a sequence of distributed query and data 
movement operations. 

1.3 Reducing Query Optimization time 
    It is imperative for a system like MemSQL that the time spent 
in optimizing a query should not overshadow the benefits of in-
memory and distributed query execution.  Query Optimization 
cannot afford to be the bottleneck in a system that is expected to 
answer real-time analytic queries within a second or few second 
(sometimes fraction of a second).  At the same time, it is also 
essential that the optimizer generate a good plan for complex 
queries involving joins, aggregations, sub-queries etc. This poses 
a new challenge in the process of query optimization. Query 
Optimization, if not done intelligently, could very well be the 
bottleneck for such complex analytical queries that require real-
time response. At MemSQL, we have taken some initial steps in 
this direction 

(a) Instead of generating bushy join trees inside the Enumerator, 
we generate bushy join trees via query rewrite using heuristics         
that are based on schema and query. 

(b) Enumerate very fast by extensively pruning the operator order 
search space. We implemented new data distribution aware 
greedy heuristics to determine an initial candidate operator order 
and use that to extensively prune states in the search space 
analysis phase. 

1.4 Related Work 
   In the past, there have been several attempts to improve query 
optimization time. Bruno et al. [19] propose several polynomial 
heuristics that take into account selectivity, intermediate join size 
etc. Some other previous work [20][21] also propose several 
heuristics but all these techniques were designed in the days when 
distributed query processing was not in vogue and therefore, they 
do not take data distribution into consideration. Another area 
where there have been attempts to improve query optimization 
time is in parallelizing the Enumeration process.  Han et al. in [23] 
proposes several techniques to parallelize parts of the System-R 
style enumerator and prototyped in PostGreSQL. Waas et al. in 
[22] propose techniques to parallelize the enumeration process for 
Cascade style enumerators.  A very recent work by Heimel et al. 

[24] suggests using GPU co-processor to speed up the query 
optimization process. 

2. BUSHY PLAN GENERATION 
    As mentioned in the literature [3][4], generating Bushy Plans as 
part of the join enumeration makes the problem of finding the 
optimal join permutation extremely challenging and time-
consuming. MemSQL solves this problem by generating Bushy 
Plans using heuristics and implementing it via query rewrite. A 
direct advantage of generating bushy plans in this way is that we 
would only consider bushy plans when there is a potential benefit. 

2.1 Bushy Plans via Query Rewrite 
    Even if the Enumerator considers only left-deep join trees, it is 
easy to generate a query execution plan that is bushy in nature.  
This can be done by creating a subselect/view/derived-table using 
the query rewrite mechanism and using the view as the right side 
of the join. The Enumerator works as usual; it treats the 
view/derived-table as another base table.  

   In particular, we use a query rewrite called Table Pushdown to 
generate bushy plans in MemSQL. Table Pushdown is a rewrite 
mechanism, which transforms a table joined with a subselect by 
pushing the table inside the subselect. Table Pushdown has its 
origins in Magic-set subquery de-correlation technique proposed 
in [18].  For Table Pushdown, we primarily look for subselects, 
which are joined with an outer table on its primary key. This 
ensures that evaluating the join with the outer table does not 
increase the size of the join, so that the transformed query plan is 
unlikely to do worse. It also ensures that if the sub-select has any 
grouping, as long as we have a join between the group-by 
columns of the subselect and the primary key of the outer table, 
pushing the table inside will not change the semantics of the 
grouping. It is still possible to do Table Pushdown without a 
primary key join, but it is less likely to be advantageous, and may 
be more complex: for example, if the subselect has a group by, we 
must add the primary key of the outer table to the group by to 
preserve the correct grouping.  The following sample query using 
tables from TPC-H benchmark would help us understand it better.  

SELECT Sum(l_extendedprice) / 7.0 AS avg_yearly 
FROM   lineitem, 
   part, 
   ( 
       SELECT 0.2 * Avg(l_quantity) AS s_avg, 
              l_partkey AS s_partkey 
       FROM   lineitem 
       GROUP BY l_partkey 
   ) sub 
WHERE  p_partkey = l_partkey 
   AND p_brand = 'Brand#43' 
   AND p_container = 'LG PACK' 
   AND p_partkey = s_partkey 
   AND l_quantity < s_avg 
 
After applying Table Pushdown rewrite, we get the following 
equivalent query 

SELECT Sum(l_extendedprice) / 7.0 AS avg_yearly 
FROM   lineitem, 
   ( 
       SELECT 0.2 * Avg(l_quantity) AS s_avg, 
              l_partkey AS s_partkey 
       FROM   lineitem, 
              part 
       WHERE  p_brand = 'Brand#43' 



 

 
 

              AND p_container = 'LG PACK' 
              AND p_partkey = l_partkey 
       GROUP  BY l_partkey 
   ) sub 
WHERE  s_partkey = l_partkey 
   AND l_quantity < s_avg 
 
Note that the join between the subselect and part is on p_partkey 
= s_partkey, the primary key of part and the group by key of the 
subselect. So we can easily push the join with part inside the 
subselect, making it far cheaper. 

2.2 Bushy Plan Heuristics 
    Using smart heuristics, it is possible to consider particularly 
promising bushy joins with relatively little cost. We can form one 
or more subselects, each of which has an independent left-deep 
join tree. The Enumerator chooses the best left-deep join tree 
within each sub-select, as well as the outer select block. By 
placing a sub-select on the right side of a join, we form a bushy 
join tree. For example, consider a snowstorm shape query, where 
there are multiple large fact tables, each joined against its 
associated dimension table(s), which have single-table filters. The 
best left-deep join plan generally must join each fact table after 
the first by either joining it before its associated dimension tables, 
when its size has not yet been reduced by their filters, or by 
joining the dimension table first, an expensive Cartesian product 
join. We may benefit greatly from a bushy join plan where we 
join the fact table with its dimension tables, benefiting from their 
filters, before joining it to the previous tables. 

   Our strategy to generate bushy join plans is to try moving a 
single table into a subselect, and then apply Table Pushdown to 
push joined tables into that subselect, especially ones with 
selective table filters. To determine which “seed” tables to 
consider as candidate starting points for forming these subselects, 
we use heuristics which often allow us to find helpful bushy join 
plans on snowstorm query shapes, such as trying all tables which 
are joined against the primary key of another table which has a 
single-table filter. In a snowstorm-type query, this will find fact 
tables, which are joined to the primary key of their associated 
dimension tables where at least one of the dimension tables has a 
single-table filter. This is exactly the type of situation where we 
most benefit from generating a bushy join plan through Table 
Pushdown.  The Rewriter will generate different candidate bushy 
join trees using these “seed” tables (one bushy view per seed 
table) and it will use the Enumerator to cost each combination and 
then (based on cost) decide which ones to retain. As an example, 
consider TPC-DS [2] query 25: 
SELECT  ……. 
FROM  store_sales ss, 
      store_returns sr, 
      catalog_sales cs, 
      date_dim d1, 
      date_dim d2, 
      date_dim d3, 
      store s, 
      item i 
WHERE  d1.d_moy = 4 
      AND d1.d_year = 2000 
      AND d1.d_date_sk = ss_sold_date_sk 
      AND i_item_sk = ss_item_sk 
      AND s_store_sk = ss_store_sk 
      AND ss_customer_sk = sr_customer_sk 
      AND ss_item_sk = sr_item_sk 
      AND ss_ticket_number = sr_ticket_number 

      AND sr_returned_date_sk = d2.d_date_sk 
      AND d2.d_moy BETWEEN 4 AND 10 
      AND d2.d_year = 2000 
      AND sr_customer_sk = cs_bill_customer_sk 
      AND sr_item_sk = cs_item_sk 
      AND cs_sold_date_sk = d3.d_date_sk 
      AND d3.d_moy BETWEEN 4 AND 10 
      AND d3.d_year = 2000 
GROUP  BY i_item_id, 
         i_item_desc, 
         s_store_id, 
         s_store_name 
ORDER  BY i_item_id, 
         i_item_desc, 
         s_store_id, 
         s_store_name 
LIMIT  100;   
 
Here, there are three fact tables (store_sales, store_returns, and 
catalog_sales), each joined against one dimension table with a 
single-table filter (date_dim).  In the cluster setup described in 
Section 4, the best left-deep join plan chosen by the Enumerator is 
(d1, ss, sr, d2, s, i, d3, cs). Note that when we join d3 it is as a 
Cartesian product join, because d3 only has join predicates with 
cs, so this is expensive, but given the restriction to left-deep join 
trees it is the better alternative to first joining cs without having 
any of the filtering that comes from the single-table filters on d3. 
We consider cs as the first “seed” table for forming a sub-select 
for a bushy join plan because it is joined against the primary key 
of d3, which has single-table filters. Applying Table Pushdown 
pushes d3 into the subselect to join with cs, because it is joined on 
its primary key and has table filters. Now, the Enumerator chooses 
the best left-deep join plan in each select block, producing the 
overall bushy join order (d1, ss, sr, d2, s, i, (d3, cs)). We also 
consider ss and sr as “seed” tables, but these bushy views do not 
improve the cost of the query and are rejected. The bushy join 
plan runs 10.1 times as fast as the left-deep join plan. The 
transformed query is  

SELECT …… 
FROM   store_sales, 
       store_returns, 
       date_dim d1, 
       date_dim d2, 
       store, 
       item, 
       (SELECT * 
        FROM   catalog_sales, 
               date_dim d3 
        WHERE  cs_sold_date_sk = d3.d_date_sk 
               AND d3.d_moy BETWEEN 4 AND 10 
               AND d3.d_year = 2000) sub 
WHERE  d1.d_moy = 4 
       AND d1.d_year = 2000 
       AND d1.d_date_sk = ss_sold_date_sk 
       AND i_item_sk = ss_item_sk 
       AND s_store_sk = ss_store_sk 
       AND ss_customer_sk = sr_customer_sk 
       AND ss_item_sk = sr_item_sk 
       AND ss_ticket_number = sr_ticket_number 
       AND sr_returned_date_sk = d2.d_date_sk 
       AND d2.d_moy BETWEEN 4 AND 10 
       AND d2.d_year = 2000 
       AND sr_customer_sk = cs_bill_customer_sk 
       AND sr_item_sk = cs_item_sk 
GROUP  BY i_item_id, 
          i_item_desc, 
          s_store_id, 



 

 
 

          s_store_name 
ORDER  BY i_item_id, 
          i_item_desc, 
          s_store_id, 
          s_store_name 
LIMIT  100; 
 
By considering these query shapes in the context of a query 
transformation pushing tables into a subselect, rather than by 
considering bushy join trees in the Enumerator, we are able to 
take advantage of this same transformation for simple bushy join 
trees as well as join trees with subselects, especially those with a 
group by. For example, using Group-by Pushdown in conjunction 
with Table Pushdown, we can transform the query by moving 
some of the tables along with a group by into a subselect: we can 
join a fact table together with its associated dimension tables, then 
evaluate the group by, then join with the remaining tables. We are 
now able to separately join the inner and outer tables, and then 
join the two intermediate relations together, forming a bushy join 
tree, which also contains a group by. 

It is worthwhile to note here that the technique of using a query 
rewrite mechanism to generate bushy join plans is not new and 
has already been explored in [5]. However, the methods used to 
achieve the same in [5] and in our Rewriter are totally different 
from each other. The mechanism in [5] identifies fact (large), 
dimension (small) and branch tables using table cardinalities, 
statistics and join conditions. It then uses a combination of such 
tables to form a view (sub-select). Instead, the MemSQL Rewriter 
does not do any categorization of tables based on cardinalities and 
statistics. It identifies a set of “seed” tables as candidate starting 
points for the sub-selects based on a set of heuristics that the seed 
table joins with a primary key of another table (without taking 
into account the cardinality or any other statistic of the seed table).  
Using the seed table and our Table Pushdown rewrite, we 
construct the bushy view (subselect). 

3. FAST ENUMERATION  
    Since MemSQL is an in-memory distributed database that 
satisfies real-time constraints on complex analytical queries, there 
are several occasions where the optimizer has to come up with the 
DQEP within very limited time budgets.  For readers who are well 
versed in the area of query optimization, it would not come as a 
surprise that the enumeration component takes up bulk of the time 
as it has to implement a search space analysis algorithm using 
some pruning criteria. The greater the number of tables in the 
query, the more time consuming the process becomes.  Many 
industrial query optimizers implement a left deep or right deep 
join order enumeration algorithm to limit the number of states in 
the search space and avoid a combinatorial explosion.  That alone 
is not enough for MemSQL because the join order is distributed 
and addition of data movement operations increases the state 
space further. 

3.1 Enumerator Search Space Analysis  
  The Enumerator optimizes the join plan within each select block, 
but does not consider optimizations involving moving joins 
between different select blocks, which is instead done by the 
Rewriter. The Enumerator processes the select blocks bottom-up, 
starting by optimizing the smallest expressions (subselects), and 
then using the annotation information to progressively optimize 
larger expressions (subselects that are parents of other sub-
selects). Eventually, the physical plan for the entire operator tree 

is determined when the enumerator is done with the outermost 
SELECT block. Even though a bottom-up approach is used, a top-
down enumeration should still be applicable with the same set of 
pruning heuristics. Figure 1 depicts the pseudo-code for the 
bottom-up enumerator. 

As mentioned before, the set of possible plans is huge and the 
search space size increases by the introduction of data movement 
operations. To limit the combinatorial explosion, the Enumerator 
implements a bottom-up System-R [1] style dynamic 
programming based join order enumerator with interesting 
properties. System-R style optimizers have the notion of 
“interesting orders” to help optimize for physical properties like 
sort order etc. MemSQL Optimizer Enumerator employs an 
interesting property of “sharding distribution”; i.e. the set of keys 
over which data is sharded in the distributed system. The 

interesting shard keys are (1) predicate columns of equality joins 
and (2) grouping columns. 

3.2 Pruning & Pre-Processing 
   Pruning is vital to finishing enumeration within a limited time 
budget. In the ideal situation, we want to generate very good plans 
using heuristics so that we can eliminate most of the join orders 
during the enumeration process.  The Enumerator, therefore, starts 
by using a number of heuristics to generate a set of initial 
candidate join orders. These candidate join orders are then cost 
estimated, including the size, cost of individual joins and cost of 
data movement operations. After costing the candidate join orders, 
the cheapest one amongst them provides an upper bound on the 
cost we need to consider in the dynamic programming, allowing 
us to prune the search space. We can easily use multiple cheap 
heuristics, since the cost of generating these initial join orders is 
far smaller than the cost of the full enumeration. These heuristics, 
depending on the schema and the query, can considerably reduce 
the time spent in enumeration.  
The very first candidate join order we consider is the given join 
order as specified in the query, which often is meaningful, and 
makes it very easy to give a hint to the optimizer. We also 
consider a simple greedy order, joining the tables in increasing 
order of size, preferring co-located joins over ones which require 
data movement, and preferring primary key-foreign key joins over 
other joins, and over Cartesian product joins. In addition, we 
consider join orders from a rule-based greedy approach. 

Enumerator(Select) 
{ 
        Apply the Enumerator over all child sub-selects  
        Use the heuristics to generate initial candidate join orders 
        Select the best cost plan from the candidates 

        Determine the best join order for Select, using the best 
known cost to prune. 
         Add optimizer annotations to the operator tree 
} 
 
Figure 1: Pseudo-code for the Enumerator 
 
 

 



 

 
 

3.2.1 Rule-based Greedy Candidate Join order 
   We use a relatively simple and fast rule-based greedy algorithm 
to construct a candidate join order, which often is fairly 
reasonable. The heuristics are based on primary key-foreign key 
relationships and shard keys of the tables. The greedy algorithm 
starts with a table that joins with the largest number of tables on 
their primary keys, which is often a central fact table. (Note that 
we can later swap the first and second tables to start with a 
smaller dimension table in the left-deep join tree.) Then, we 
greedily select the next table in the join using the following rules, 
in order of precedence:  

• Prefer a table that has a join with the current tables. 
Among these, prefer a join on a primary or unique key 
over any other join condition. 

• If there are any remaining tables which can be joined 
without data movement (i.e. the join and shard keys 
match), prefer one of them, or any other table for which 
the join method will preserve this partitioning (i.e. 
where we would choose to broadcast or repartition that 
table). The rationale allowing a next table, which does 
have a shard/join key match, is that after joining with 
the ones, which do, we would still in most 
circumstances join it with the same data movement 
method. By joining it first, we can still join the 
shard/join key matching tables without movement later, 
and we may benefit from a more selective join (the next 
rule). 

• Prefer a table that results in the smallest intermediate 
join size, taking into account the selectivity of the 
available join and table filters. 

• Prefer the table that requires the least cost to join. 
Consider TPC-H query 8 as an example: 
SELECT ….. 
   FROM   part, 
          supplier, 
          lineitem, 
          orders, 
          customer, 
          nation n1, 
          nation n2, 
          region 
   WHERE  p_partkey = l_partkey 
          AND s_suppkey = l_suppkey 
          AND l_orderkey = o_orderkey 
          AND o_custkey = c_custkey 
          AND c_nationkey = n1.n_nationkey 
          AND n1.n_regionkey = r_regionkey 
          AND r_name = 'AMERICA' 
          AND s_nationkey = n2.n_nationkey 
          AND o_orderdate BETWEEN DATE 
('1995-01-01') AND DATE ('1996-12-31') 
          AND p_type = 'LARGE BRUSHED BRASS' 
   ) AS all_nations 
GROUP BY o_year 
ORDER BY o_year 
 
In this example, we will assume the cluster setup described in 
Section 4, at scale factor 10. We begin with lineitem, because it is 
joined against three tables on their primary keys: orders, supplier, 
and part. All three of those tables are tied under the first rule, 
which favors primary key joins. Of those tables, orders table has a 
join and shard key match, so it can be joined without movement. 

However, because part is small (especially after filters), the best 
way to join part would be to broadcast it, which preserves the 
partitioning of the join-so-far. Between orders and part, we prefer 
part because it has a more selective filter, thus yielding a smaller 
number of rows after the join. After joining part, we join with 
orders next, because it has both a shard key match and table 
filters. Now we have a primary key match with supplier and 
customer, both of which we would join by repartitioning the left 
side. Since supplier is smaller and thus cheaper, we join it next. 
Next is nation n2 by broadcasting the right side, then customer 
(by repartitioning the left side), then nation n1 by broadcasting 
nation, and finally region by broadcasting right. This is in fact the 
optimal distributed join plan. Finding it therefore allows us to 
prune the vast majority of the Enumerator’s dynamic 
programming search space. After finding this initial candidate join 
order, we can prune 96% of the total dynamic programming 
search space. Even if we already heuristically prune all Cartesian 
product joins, it still prunes 83% of the remaining search space. 
Of course, this example includes only eight tables, and with more 
tables the search space would be exponentially larger, as well as 
the number and proportion of bad intermediate join plans which 
could be pruned, making high-quality pruning even more 
important. 
Our Rule-based Greedy Heuristic, driven by data distribution, 
have very little in common with the ones proposed in [19], [20] 
and [21]. Primarily, because the aim is to reduce the amount of 
data that goes over the network and in order to achieve that, we 
have to necessarily take into account the physical data distribution 
(shard keys etc.).  Our heuristics also differ in the fact that the 
previous work [19] and [20] employed the heuristics over an 
Enumerator that supports bushy trees and that created more 
opportunities for applying their heuristics whereas our 
Enumerator only accepts left-deep trees and that constrains the 
applicability of several heuristics proposed in [19] and [20]. 

4. EXPERIMENTS 
   For our experimental comparisons, we ran MemSQL on 
Amazon EC2 [15], using the MemSQL row-store only. For TPC-
H and TPC-DS scale factor 10, we used a cluster of 1 aggregator 
and 4 leaves, while for scale factor 100 we used a cluster of 1 
aggregator and 32 leaves. All instances were m3.2xlarges, with 8 
virtual CPU cores (on 2.5 GHz Intel Xeon E5-2670 v2 
processors), 30 GB RAM, and two 80GB SSDs.  

In order to prove the effectiveness of the Rule-Based Greedy 
Heuristic, we ran queries from the TPC-H benchmark. Figure 2 
shows the percentage of states that were pruned for six queries 
from the benchmark. We also mention the number of tables for 
each query to indicate the benefit of the heuristic with the increase 
in the number of tables. 
 
 
 
 
 
 
 

 
 

Query Tables Pruned % 

Q3 3 25.00% 

Q5 6 61.46% 

Q7 6 72.92% 

Q8 8 95.80% 

Q9 6 84.90% 

Q10 4 62.50% 
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Figure 2: Percentage of pruned states for Greedy 



 

 
 

 

It can be seen that the heuristic allows us to prune a majority of 
the states for Q5, Q7, Q8, Q9 and Q10.  Also, the pruning 
percentage is consistently on the higher side as the number of 
tables in the query increases. In the case of Q3, there were only 
twelve states and we pruned only three, thus making the pruning 
percentage 25.00%.  But Q3 only had three tables, and it did not 
matter a lot even if we prune less since the total number of states 
was only twelve.  
It is worthwhile to mention that the aim of the pruning heuristics 
is to come up with a reasonably good plan that helps us prune a 
majority of the states; the heuristic plan does not have to be the 
optimal plan.  In case of Q5, the cost of the optimal plan is 
4,359,746 while the cost of the heuristic plan is 102,177,223. 
However, it still led to a good pruning percentage of 61.46%. The 
percentage numbers for the other queries in TPC-H are not 
mentioned here but for every query that has more than three tables 
joined, the Enumerator was able to prune at least 60% of the states 
and more than 80% in most of the cases. 
Another experiment performed was to evaluate the performance 
gained by introducing bushy join plans and also the overhead of 
introducing bushy joins. The first metric used in this case was the 
actual query response time (including optimization time). The 
second metric was the added overhead of the Bushy Join query 
rewrite. We ran several queries from the TPC-DS benchmark and 
our heuristics enabled bushy joins for several queries. Figure 3 
(Column 3) mentions the speedup in query response time over the 
left-deep tree plan chosen by the optimizer when bushy plans 
were turned off.  Figure 3 (Column 2) mentions the overhead in 
the Rewriter when bushy joins were enabled. In all cases, the 
Rewriter spent a very minimal amount of time to perform the 
Bushy Plan generation.  It can be seen that the queries get a 
tremendous speedup in execution at the cost of a very minimum 
overhead in the Rewriter. This validates our assumption that it is 
indeed a good idea to generate bushy joins outside of the 
Enumerator. In total, fourteen queries in TPC-DS benchmark were 
benefitted by Bushy Joins; speedups ranging from 2.5X to 10.1X. 

 

 
5. CONCLUSION & FUTURE WORK 
In this paper, we described some of the early steps that we have 
taken to reduce the query optimization time for large analytical 
queries. We proposed generating bushy plans via query rewrite 
mechanism the rewrite itself triggered using heuristics that use 
properties of the schema and the query. We proposed new 
distribution aware greedy heuristics to prune out states in the 
distributed join order selection inside the Enumerator. We also 
demonstrated the effectiveness of these techniques with 
experimental results. Our Greedy heuristic is able to prune a 
majority of the states for queries that involve more tables. Our 
Bushy Join technique gives us huge improvements in execution 
time for several TPC-DS queries. The next steps for us would be 

to investigate parallelizing the enumeration process based on ideas 
in literature. We also want to refine the existing heuristics based 
on more customer experiences, and run the Enumerator over 
queries that require a huge number of tables to be joined.  
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Query Overhead SpeedUp (X) 

Q15 13% 5.8 

Q25 16% 10.1 

Q46 12% 2.85 

Figure 3: Bushy Join Speedup for TPC-DS 




